
Cray Debugging Support Tools

Luiz DeRose
Sr. Principal Engineer

Programming Environments Director
Cray Inc.

February 2013 Luiz DeRose - Cray Inc © 2013
1

Debugging on Cray Systems

● Systems with thousands of threads of execution need a new
debugging paradigm

● Cray’s focus is to build tools around traditional debuggers with

innovative techniques for productivity and scalability
● Support for traditional debugging mechanism

● RogueWave TotalView and Allinea DDT

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree
● ATP - Abnormal Termination Processing

● Scalable analysis of a sick application, delivering a STAT tree and a minimal, comprehensive,
core file set.

● lgdb 2.0

● Ability to see data from multiple processors in the same instance of lgdb
● without the need for multiple windows

● Comparative debugging
● A data-centric paradigm instead of the traditional control-centric paradigm
● Collaboration with Monash University and University of Wisconsin for scalability

● Fast Track Debugging

● Debugging optimized applications
● Added to Allinea's DDT 2.6 (June 2010)

February 2013
2

Luiz DeRose - Cray Inc © 2013

MRNet - Multicast Reduction Network

● Tree based software overlay network

● Provides efficient multicast and reduction
communications for parallel and distributed tools

● Uses a tree of processes between the tool's front-end and
back-ends to improve group communication performance
● Internal processes are used to distribute important tool activities

● Reduce data analysis time

● Keep tool front-end loads manageable

February 2013
3

Luiz DeRose - Cray Inc © 2013

Stack Trace Analysis Tool (STAT)

● Stack trace sampling and analysis for large scale
applications
● Sample application stack traces

● Scalable generation of a single, merged, stack backtrace tree
● A comprehensible view of the entire application

● Discover equivalent process behavior
● Group similar processes

● Reduce number of tasks to debug

● 128K processes analyzed in 2.7 seconds, using MRNet

● Merge/analyze traces:
● Facilitate scalable analysis/data presentation

● Multiple traces over space or time

● Create call graph prefix tree
● Compressed representation

● Scalable visualization

● Scalable analysis

February 2013
4

Luiz DeRose - Cray Inc © 2013

Stack Trace Merge Example

February 2013
5

Luiz DeRose - Cray Inc © 2013

2D-Trace/Space Analysis

Appl

Appl

Appl

Appl

Appl

February 2013
6

Luiz DeRose - Cray Inc © 2013

STATview & STATGUI

February 2013 Luiz DeRose - Cray Inc © 2013

● STATview is a GUI for viewing STAT outputted DOT files
● STATview provides easy navigation of the call prefix tree and also

allows manipulation of the call tree to help focus on areas of interest

● STATGUI is a GUI that drives STAT and allows you to
interactively control the sampling of stack traces from
your parallel application
● STATGUI is built on top of STATview and provides the same call tree

manipulation operations

● In addition to the operations provided by STATview, STATGUI
provides a toolbar to control STAT's operations

● STATGUI can also serve as an interface to attach a full-
featured debugger such as DDT to a subset of the
application tasks

7

● module load stat
● Not loaded by default

● man STAT

● STAT <pid_of_aprun>
● Creates STAT_results/<app_name>/<merged_bt_file>

● Scaling limited by number file descriptor

STAT 1.2.1.3

February 2013
8

Luiz DeRose - Cray Inc © 2013

ATP: The Problem Being Solved

● When a large scale parallel application dies, one, many, or
all processes might trap!
● It is next to impossible to examine all the core files and backtraces

● No one wants that many stack backtraces
● No one wants that many core files

● They are too slow and too big
● Sufficient storage for all core files is a problem

● They are too much to comprehend

● A single core file or stack backtrace is usually not enough to debug
either!
● A single backtrace produced might not be from the process that first failed

● Requirements:

● Minimum jitter
● Scalability
● Robustness
● Small footprint
● Limited core file dumping

● ATP 1.6.1 was released in January 2013

February 2013
9

Luiz DeRose - Cray Inc © 2013

ATP Description

● System of light weight back-end monitor processes on
compute nodes
● Coupled together with MRNet

● Automatically launched by aprun in parallel with application launch
● Enabled/disabled via ATP_ENABLED environment variable

● Leap into action on any application process trapping
● stderr backtrace of first process to trap

● dumps core file set (if limit/ulimit allows)

● Uses StackwalkerAPI to collect individual stack backtraces, even for
optimized code

● STAT like analysis provides merged stack backtrace tree
● Leaf nodes of tree define a modest set of processes to core dump

● or, a set of processes to attach to with a debugger

February 2013
10

Luiz DeRose - Cray Inc © 2013

● ATP produces a single merged stack trace
● or a reduced set of core files

● ATP selects a single representative from each leaf node of the merged
stack backtrace tree
● Each core file is named core.atp.apid.rank

● Users can control, to some degree, the set of core dumps created by ATP

● The benefits:
● Minimal impact on application run

● Can be used with production runs

● Automated, transparent collection of data

● Ability to hold failing application for close inspection
● This is site dependent

● Easy to navigate the merged stack trace

● Manageable set of core files

● Reduced amount of data saved
● Especially true in the core file situation

Abnormal Termination Processing

February 2013
11

Luiz DeRose - Cray Inc © 2013

● ATP is launched via an ALPS enhancement which includes the
fork/exec of a login side ATP front-end daemon
● The ATP front-end uses MRNet and the ALPS tool helper library to launch

ATP back-end servers on all compute nodes associated with the
application

● ATP signal handler runs within an application to catch fatal

errors
● It handles the following signals:

● SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS,
SIGXCPU, SIGXFSZ

● Setting the environment variables MPICH_ABORT_ON_ERROR and
SHMEM_ABORT_ON_ERROR will cause a signal to be thrown and captured
for MPI and SHMEM fatal errors

● ATP daemon running on the compute node captures signals,

starts termination processing
● Rest of the application processes are notified
● Generates a stacktrace
● Creates a single merged stack trace file

● The stack trace file is viewed with the STATview tool

ATP: How It Works

February 2013
12

Luiz DeRose - Cray Inc © 2013

ATP Hold Time

February 2013 Luiz DeRose - Cray Inc © 2013
13

● ATP is able to hold a dying application in stasis in order to
allow the user to attach to it with a debugger
● To do so, set the ATP_HOLD_TIME environment variable to the

number of minutes desired

● Once attached, the debugging session can last as long as
the batch system allows
● Which in turn depends on the compute node resources you requested

when you began your session

● So use ATP_HOLD_TIME to define the time you need to attach to the
application, not the total time needed for the debugging session.

● If ATP_HOLD_TIME is set, core dumping is disabled

Comparative Debugger

● Collaboration with Monash University
● A data-centric paradigm instead of the traditional control-centric

paradigm

● Helps the programmer locate errors in the program by

observing the divergence in key data structures as the
programs are executing

● Allows comparison of a “suspect” program against a “reference” code

using assertions
● Simultaneous execution of both
● Ability to assert the match of data at given points in execution
● Focus on data – not state and internal operations
● Narrow down problem without massive thread study

● Data comparison
● Tolerance control – nobody expect it to be perfect
● Array subsets – correlate serial to parallel bits
● Array index permutation – loops rearranged
● Automated asserts – let it run until a problem is found
● Forcing correct values – continue on with correct data

February 2013
14

Luiz DeRose - Cray Inc © 2013

Assertions, Graphs and Blockmaps…
 Oh my!

● Need a way to declare that we expect two pieces of data
are equivalent
● Backup: What is data?

● Define specific variables in the source (where?)

● Define a particular line number to observe the variables (when?)

● Assertions provide this ability
● Assert that the two should be equivalent at that moment

Data

Data

Assertion

•When?

•When?

•Where?

•Where?

February 2013
15

Luiz DeRose - Cray Inc © 2013

Assertions, Graphs and Blockmaps…
 Oh my!

● But wait, there's more
● Want to compare multiple variables at the same line number in the

code

● Want to compare a single variable at many different line numbers in
the code.

● There’s a graph for that
● Execute many different assertions simultaneously

Graph

Assertion

Assertion

Assertion

February 2013
16

Luiz DeRose - Cray Inc © 2013

Assertions, Graphs and Blockmaps…
 Oh my!

February 2013 Luiz DeRose - Cray Inc © 2013
17

● Sometimes assertions alone are not enough
● Serial data to distributed data

● One-dimensional to multi-dimensional data.

● Scalar to non-scalar data.

● Blockmaps provide a simple mechanism to decompose
data
● Based on HPF syntax

● Allows for block, cyclic, and * (wildcard) decomposition definitions

● Defines how the data is distributed across a set of parallel processes

Example of a (block,*)

decomposition.

Putting It Together

February 2013 Luiz DeRose - Cray Inc © 2013
18

● A graph is made up of assertions which contains data
definitions
● Data versus data, blockmap versus data, blockmap versus blockmap.

● Once defined, a graph is executed

Comparative Debugger Status

February 2013 Luiz DeRose - Cray Inc © 2013
19

● Released with lgdb 2.0.0 (November 2012)
● module load cray-lgdb

● On Blue Waters - cray-lgdb/2.0.1(default)

● Supports applications compiled with CCE, PGI, and GNU
Fortran, C, and C++ compilers.

● Basic operation is documented in the lgdb man page
● man lgdb(1)

● A white paper on “Using the lgdb Comparative Debugging
Feature” will be available soon

● We are working on a graphical user interface (GUI) for
better ease of use

● How to debug parallel optimized codes

● Debug flags eliminate optimizations
● Today's machines really need optimizations

● Slows down execution

● Problem might disappear

● Fast Track Debugging addresses this problem

Fast Track Debugging: The Problem Being
Solved

February 2013
20

Luiz DeRose - Cray Inc © 2013

How to do "Fast Track Debugging"?

● Compile such that both debug and non-debug (optimized)
versions of each routine are created
● Debug and non-debug versions of each subroutine appear in the

executable

● Linkage such that optimized versions are used by default

● User sets breakpoints or other debug constructs
● Debugger overrides default linkage when setting breakpoints and

stepping into functions

● Routines automatically presented using the debug version of the
routine

● Rest of program executes using optimized versions of the routines

February 2013
21

Luiz DeRose - Cray Inc © 2013

A Closer Look at How FTD Works

subrountine difuze(…)

call difuze(…)

call interf(…)

subrountine interf(…)

source code
difuze()

call difuze(…)

call interf(…)

interf()

optimized binary code

difuze_debug()

interf_debug()

call difuze(…)

call interf(…)

debug code

Jmp inserted as part of breakpoint planting

Breakpoint requested in interf(),

placed in interf_debug()

February 2013
22

Luiz DeRose - Cray Inc © 2013

Tera TF Execution Time

February 2013
23

Luiz DeRose - Cray Inc © 2013

● Compiles are slower

● Executable uses more disk space

● Libraries probably don't have a debug version

● Inlining turned off
● 1.7% average slow down of all SPEC2007MPI tests

● Range of slight speedup to 19.5% slow down

● Uses more memory
● 4% larger at start up

● 0.0001% larger after computation

Fast Track Debugger – Issues / Cost

February 2013
24

Luiz DeRose - Cray Inc © 2013

● Support available in the Cray Compilation Environment
(CCE)

● Prototype in gdb
● Exercised through lgdb

● Added to Allinea's DDT 2.6 (June 2010)

Fast Track Debugger Status

February 2013
25

Luiz DeRose - Cray Inc © 2013

